The C. elegans TGF-beta Dauer pathway regulates longevity via insulin signaling.

نویسندگان

  • Wendy M Shaw
  • Shijing Luo
  • Jessica Landis
  • Jasmine Ashraf
  • Coleen T Murphy
چکیده

BACKGROUND Previous genetic evidence suggested that the C. elegans TGF-beta Dauer pathway is responsible solely for the regulation of dauer formation, with no role in longevity regulation, whereas the insulin/IGF-1 signaling (IIS) pathway regulates both dauer formation and longevity. RESULTS We have uncovered a significant longevity-regulating activity by the TGF-beta Dauer pathway that is masked by an egg-laying (Egl) phenotype; mutants in the pathway display up to 2-fold increases in life span. The expression profiles of adult TGF-beta mutants overlap significantly with IIS pathway profiles: Adult TGF-beta mutants regulate the transcription of many DAF-16-regulated genes, including genes that regulate life span, the two pathways share enriched Gene Ontology categories, and a motif previously associated with DAF-16-regulated transcription (the DAE, or DAF-16-associated element) is overrepresented in the promoters of TGF-beta regulated genes. The TGF-beta Dauer pathway's regulation of longevity appears to be mediated at least in part through insulin interactions with the IIS pathway and the regulation of DAF-16 localization. CONCLUSIONS Together, our results suggest there are TGF-beta-specific downstream targets and functions, but that the TGF-beta and IIS pathways might be more tightly linked in the regulation of longevity than has been previously appreciated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The C. elegans TGF-β Dauer Pathway Regulates Longevity via Insulin Signaling

Background: Previous genetic evidence suggested that the C. elegans TGF-b Dauer pathway is responsible solely for the regulation of dauer formation, with no role in longevity regulation, whereas the insulin/IGF-1 signaling (IIS) pathway regulates both dauer formation and longevity. Results: We have uncovered a significant longevity-regulating activity by the TGF-b Dauer pathway that is masked b...

متن کامل

TGF-ß Sma/Mab Signaling Mutations Uncouple Reproductive Aging from Somatic Aging

Female reproductive cessation is one of the earliest age-related declines humans experience, occurring in mid-adulthood. Similarly, Caenorhabditis elegans' reproductive span is short relative to its total life span, with reproduction ceasing about a third into its 15-20 day adulthood. All of the known mutations and treatments that extend C. elegans' reproductive period also regulate longevity, ...

متن کامل

A common muscarinic pathway for diapause recovery in the distantly related nematode species Caenorhabditis elegans and Ancylostoma caninum.

Converging TGF-beta and insulin-like neuroendocrine signaling pathways regulate whether Caenorhabditis elegans develops reproductively or arrests at the dauer larval stage. We examined whether neurotransmitters act in the dauer entry or recovery pathways. Muscarinic agonists promote recovery from dauer arrest induced by pheromone as well as by mutations in the TGF-beta pathway. Dauer recovery i...

متن کامل

Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway

C. elegans insulin-like signaling regulates metabolism, development, and life span. This signaling pathway negatively regulates the activity of the forkhead transcription factor DAF-16. daf-16 encodes multiple isoforms that are expressed in distinct tissue types and are probable orthologs of human FKHRL1, FKHR, and AFX. We show that human FKHRL1 can partially replace DAF-16, proving the ortholo...

متن کامل

An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans.

Mutations in daf-2 and age-1 cause a dramatic increase in longevity as well as developmental arrest at the dauer diapause stage in Caenorhabditis elegans. daf-2 and age-1 encode components of an insulin-like signaling pathway. Both daf-2 and age-1 act at a similar point in the genetic epistasis pathway for dauer arrest and longevity and regulate the activity of the daf-16 gene. Mutations in daf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current biology : CB

دوره 17 19  شماره 

صفحات  -

تاریخ انتشار 2007